
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2755

An Efficient Field Programmable Gate Array

Implementation of Double Precision Floating

Point Multiplier using VHDL

Sukhvir Kaur
1
 and Parminder Singh Jassal

 2

M.Tech Student, ECE, Yadvindra College of Engineering, Talwandi Sabo (Pb)-India
1

Assistant Professor, ECE, Yadvindra College of Engineering, Talwandi Sabo (Pb)-India
2

Abstract: Floating point arithmetic is widely used in many areas, especially scientific computation and signal

processing. The main applications of floating points today are in the field of medical imaging, biometrics, motion

capture and audio applications. Multipliers play an important role in today‟s digital signal processing and various other

applications. A system‟s performance is generally determined by the performance of the multiplier, because the

multiplier is generally the slowest element in the system. The way floating point operations are executed depends on

the data format of the operands. IEEE standards specify a set of floating point formats single precision and double

precision. This paper presents an efficient FPGA implementation of double precision floating point multiplier using

VHDL.

Key Words: Single Precision, Double Precision, Field Programmable Gate Array, Multiplier.

I. INTRODUCTION

Floating point number system is a common choice for

many scientific computations due to its wide dynamic

range feature. For instance, floating point arithmetic is

widely used in many areas, especially in scientific

computation, numerical processing, image processing and

signal processing. The term floating point is derived from

the fact that there is no fixed number of digits before and

after the decimal point, that is, the decimal point or binary

point can float. There are also representations in which the

number of digits before and after the decimal or binary

point is fixed; called fixed-point representations. The

advantage of floating-point representation over fixed point

representation is that it can support a much wider range of

values. The floating point numbers is based on scientific

notation. A scientific notation is just another way to

represent very large or very small numbers in a compact

form such that they can be easily used for computations.

The floating point multiplication operations are greatly

affected by how the floating point multiplier is designed.

Floating point number consists of three fields:

1. Sign (S): It used to denote the sign of the number i.e. 0

represent positive number and 1 represent negative

number.

2. Significand or Mantissa (M): Mantissa is part of a

floating point number which represents the magnitude of

the number.

3. Exponent (E): Exponent is part of the floating point

number that represents the number of places that the

decimal point (binary point) is to be moved.

Number system is completely specified by specifying a

suitable base β, significand (mantissa) M, and exponent E.

A floating point number F has the value

F= M β
E

The way floating point operations are executed depends on

the data format of the operands. IEEE standards specify a

set of floating point data formats, single precision and

double precision. The Single precision consists of 32 bits

and the Double precision consists of 64 bits. Figure 1

shows the IEEE single and double precision data formats.

(a) IEEE single precision data format

(b) IEEE double precision data format

Figure 1: IEEE Single and Double Precision data Format

The value of the floating point number represented in

single precision format is

F=

where 127 is the value of bias in single precision data

format and exponent E ranges between 1 to 254, and E =

0 and E = 255 are reserved for special values.

The value of the floating point number represented in

double precision data format is

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2756

F=

where 1023 is the value of bias in double precision data

format. Exponent E ranges between 1 to 2046, the values

of E = 0 and E = 2047 are reserved for special values.

II. DOUBLE PRECISION FLOATING POINT

MULTIPLIER

Multipliers are key components of many high performance

systems such as FIR filters, Microprocessors, Digital

Signal Processors etc. A system‟s performance is

generally determined by the performance of the multiplier,

because the multiplier is generally the slowest element in

the system. Furthermore, it is generally the most area

consuming. Hence, optimizing the speed and area of the

multiplier is a critical issue for an effective system design.

A. Floating point multiplication algorithm

Multiplication of floating point numbers F1 and F2 is a five

step process. To multiply two floating point numbers the

following is done:

1. Obtaining the sign; i.e. S1 xor S2.

2. Adding the exponents; i.e. (E1 + E2 – Bias).

3. Multiplying the significand; i.e. (1.M1*1.M2).

4. Placing the decimal point in the result.

5. Normalizing the result; i.e. obtaining 1 at the MSB of

the results‟ significand.

6. Rounding the result to fit in the available bits.

7. Checking for underflow/overflow occurrence [2].

B. Floating point Multiplier design

The multiplier for the floating point numbers represented

in IEEE 754 format can be divided into three different

units: Mantissa Calculation unit, Exponent Calculation

unit and Sign Calculation unit [3].The Multiplier receives

two 64-bit floating point numbers. First these numbers are

unpacked by separating the numbers into sign, exponent,

and mantissa bits. The floating point multiplication is

carried out in following three parts.

Sign calculation unit:-

In this unit, we determine the sign of the product by

performing a XOR operation on the sign bits of the two

operands.

Exponent calculation unit:-

This unsigned adder is used for adding the exponent of the

first input to the exponent of the second input and

subtracting the Bias (1023) from the addition result.

Eresult = A_exponent + B_exponent – Bias

The exponent of the result must be 11 bits in size, and

must be between 1 and 2046 otherwise the value is not a

normalized one. Overflow/underflow means that the

result‟s exponent is too large/small.

Mantissa Calculation unit:-

The multiplication is done in two steps, partial product

generation and partial product addition. For double

precision operands (53-bit fraction fields), a total of

53*53-bit multiplier is required. Mantissa multiplier unit

performs multiplication operation. After this the output of

mantissa is normalized, i.e. if the MSB of the result

obtained is not 1, then it is left shifted to make the MSB 1.

If changes are made by shifting then corresponding

changes has to be made in exponent also. The mantissa of

operand A and the leading „1‟ (for normalized numbers)

are stored in the 53-bit register (Ma). The mantissa of

operand B and the leading „1‟ (for normalized numbers)

are stored in the 53-bit register (Mb). Multiplying all 53

bits of Ma by 53 bits of Mb would result in a 106-bit

product. Rounding is used to fit the result in available bit

then output of mantissa multiplication is 56 bits.

III. FPGA IMPLEMENTATION OF

MULTIPLIER

IV. The FPGA-based implementations of the

double precision floating point multiplier have been

presented in this section. For implementation purpose,

Xilinx Integrated Software Environment ISE 10.1i

software tool has been used. The double precision floating

point multiplier component has been coded in VHDL

.Code has been synthesized and simulated using Xilinx

ISE 10.1i which are mapped on to Spartan 3E FPGA. The

RTL view, design summary and simulation result of the

floating point multiplier are shown in following section.

The „clk‟, „rst‟, „enable‟, „opa‟ and „opb‟ are the inputs of

double precision floating point multiplier. The

„exponent_5‟, „product_7‟and „sign‟ is the outputs.

Figure 2: RTL Diagram of the Floating point multiplier

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2757

Let's suppose a multiplication of two floating-point

numbers

A and B, where A= -18.0 and B = 9.5 Binary

representation

Table 1 show the summary of resources utilized by the

double precision Floating point multiplier for a Spartan 3E

device.

Table 1: Resource utilization by the Floating point multiplier

Table 2: Device utilization summary (xc3s1600e-5fg320)

Logic

Utilization

Used Available Utilization

in %age

No. of slices 2898 14752 19%

No. of 4

input LUTs

5114 29504 17%

No of slice

Flip Flops

1540 29504 5%

Number of

bonded

IOBs

200 250 80%

Max Delay 0.477ns

Table 3: Summary of Power Consumption by Floating point multiplier

of the operands:

 A = -10010.0 B = +1001.1

Normalized representation of the operands:

 A = -1.001x2
4

 B = +1.0011x2
3

IEEE representation of the operands:

A= 1 10000000011

001000

000000 (hex) 64‟hC032000000000000

B= 0 10000000010

001100

000000 (hex) 64‟h4023000000000000

In our case, we get:

A) Sign output:

Calculation of the sign of the result: Sign = Sa ⊕ Sb .The

sign of the result is given by the XOR of the operands

signs (Sa and Sb).

 In our example, we get: Sign = 1 ⊕ 0 = 1 i.e. a negative

sign.

B) Exponent output:

Calculation of the exponent field of the result: Er

(exponent_5) = (Ea-1023) + (Eb-1023) + 1023 =Ea + Eb

– 1023

 In our example:

 Ea 10000000011

 Eb 10000000010

- 1023 10000000001

Er (exponent_5) 10000000110, the exponent of the result

in hexadecimal is 12’h406.

C) Mantissa output:

Multiplication of the mantissas: we must extract the

mantissas, adding a 1 as most significant bit, for

normalization. Ma and Mb is 53 bit i.e. Mr = Ma*Mb

(53*53)

Ma=1001000000000000000000000000000000000000000

0000000000

Mb=100110000000000000000000000000000000000000

00000000000

The Mr (106-bit) result of the multiplication is:

0x5580000000000 only the most significant bits are

useful: after normalization we get the 56-bit mantissa of

the result is

56’h55800000000000
A result (sign, exponent and mantissas) gives us the final

result of our multiplication:

1 10000000110

010101100000000000000000000000000000000000

0000000000

 = -18.0x9.5 = -1.0101011 x 2
1030-1023

 = - 10101011.0 = -171.010

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2758

The output is also verified by the Xilinx ISE simulator

that is same. Figure 3 shows Simulation results of the

double precision floating point multiplier for given input.

Figure 3: Simulation results of floating point multiplier for given input

IV. CONCLUSION

This paper presents FPGA implementation of double

precision floating point multiplier that supports the IEEE

754-2008 binary interchange format. The multiplier is

designed in VHDL. The design implemented on a Xilinx

ISE 10.1i tool targeting the Spartan 3E device xc3s1600e-

5fg320. The power consumption for the design is 203

mW.The implementation of Floating point multiplier

shows the use of 5% Slice Flip Flops, 17% 4 input LUTs,

80% bonded IOBs and 19% number of slices. Although

double precision floating point multiplier uses more

resources and consumes more power, yet it has very high

speed. The max delay of this design is 0.477ns

REFERENCES

[1] Purna Ramesh Addanki,Venkata Nagaratna Tilak Alapati and

Mallikarjuna Prasad Avana, “An FPGA Based High Speed IEEE - 754

Double Precision Floating Point Adder/Subtractor and Multiplier Using
Verilog”, International Journal of Advanced Science and Technology,

Vol. 52, pp.61-74, March 2013.

[2] Riya Saini and R.D.Daruwala,“Efficient Implementation of Pipelined

Double Precision Floating Point Multiplier”,International Journal of

Engineering Research and Applications, Vol. 3, Issue 1, pp.1676-1679,

January -February 2013.
[3] Anna Jain, Baisakhy Dash and Ajit Kumar Panda,“FPGA Design of

a Fast 32-bit Floating Point Multiplier Unit”, IEEE Conference

Publications, pp. 545 – 547, 2012.
[4] Addanki Purna Ramesh and Rajesh Pattimi,“ High Speed Double

Precision Floating Point Multiplier”,International Journal of Advanced

Research in Computer and Communication Engineering, Vol. 1, Issue 9,
pp. 647 – 650, November 2012.

[5] Xia Hong and Jia Jinging,“Research and optimization on Rounding

Alogrithms for Floating-Point Multiplier”,IEEE Conference
Publications,International Conference on Computer Science and

Electronics Engineering, pp. 137 – 142, 2012.sue ii, june 2012
[6] Tashfia.Afreen, Minhaz. Uddin Md Ikram, Aqib. Al Azad, and

Iqbalur Rahman Rokon, “Efficient FPGA Implementation of Double

Precision Floating Point Unit Using Verilog HDL” ,International

Conference on Innovations in Electrical and Electronics
Engineering,Oct. 6-7, 2012 .

[7] Puneet Paruthi, Tanvi Kumar and Himanshu Singh,“Simulation of

IEEE 754 Standard Double Precision Multiplier using Booth
Techniques”, International Journal of Engineering Research and

Applications, Vol. 2, Issue 5, pp. 1761-1766, September- October

2012.4
[8] B.Sreenivasa Ganesh, J.E.N.Abhilash and G. Rajesh Kumar, “Design

and Implementation of Floating Point Multiplier for Better Timing

Performance”, International Journal of Advanced Research in Computer
Engineering & Technology, Vol. 1, Issue 7, September 2012.

[9] Mohamed Al-Ashrafy, Ashraf Salem and Wagdy Anis,“An Efficient

Implementation of Floating Point Multiplier”,IEEE
Electronics,Communications and Photonics Conference (SIECPC),

Saudi International , pp. 1 - 5, 2011.

[10] Soojin Kim And Kyeongsoon Cho, “Design Of High-Speed
Modified Booth Multipliers Operating At Ghz Ranges”, World

Academy Of Science, Engineering and Technology, 2010.

[11] Gong Renxi, Zhang Shangjun, Zhang Hainan, Meng Xiaobi, Gong
Wenying, Xie Lingling and Huang Yang, “Hardware Implementation of

a High Speed Floating Point Multiplier Based on FPGA”, IEEE

Conference Publications, 4th International Conference on Computer
Science & Education, pp.1902 – 1906, 2009.

[12] Saroja.V Siddamal, R.M Banakar and B.C. Jinaga, “Design of

High-Speed Floating Point Multiplier”, 4th IEEE International
Symposium on Electronic Design, Test & Applications, pp. 285 – 289,

2008.

[13] Manish Kumar Jaiswal and Nitin Chandrachoodan,“Efficient
Implementation of IEEE Double Precision Floating-Point Multiplier on

FPGA”, IEEE Region 10 Colloquium and the Third ICIIS, Kharagpur,

India, December 2008.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5783968
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5783968

